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Abstract

The cost of fixing system vulnerabilities and the risk associated with vulnerabilities after system
deployment are high for both developers and end users. While there are a number of best practices
available to address the issue of software security vulnerabilities, these practices are often difficult
to reuse due to the implementation-specific nature of the best practices. In addition, greater under-
standing of the root causes of security flaws has led to a greater appreciation of the importance of
taking security into account in all phases in the software development life cycle, not just in the
implementation and deployment phases. This report describes a set of secure design patterns,
which are descriptions or templates describing a general solution to a security problem that can be
applied in many different situations. Rather than focus on the implementation of specific security
mechanisms, the secure design patterns detailed in this report are meant to eliminate the acciden-
tal insertion of vulnerabilities into code or to mitigate the consequences of vulnerabilities. The
patterns were derived by generalizing existing best security design practices and by extending
existing design patterns with security-specific functionality. They are categorized according to
their level of abstraction: architecture, design, or implementation.
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1 Introduction

1.1 About Secure Design Patterns

A pattern is a general reusable solution to a commonly occurring problem in design. Note that a
design pattern is not a finished design that can be transformed directly into code. It is a descrip-
tion or template for how to solve a problem that can be used in many different situations. Algo-
rithms are not thought of as design patterns because they solve computational problems rather
than design problems.

Secure design patterns are meant to eliminate the accidental insertion of vulnerabilities into code
and to mitigate the consequences of these vulnerabilities. In contrast to the design-level patterns
popularized in [Gamma 1995], secure design patterns address security issues at widely varying
levels of specificity ranging from architectural-level patterns involving the high-level design of
the system down to implementation-level patterns providing guidance on how to implement por-
tions of functions or methods in the system.

111 Pattern History

1977/79 — Architect Christopher Alexander introduced the concept of design patterns with respect
to the design of buildings and towns [Alexander 1977].

1987 — Beck and Cunningham experimented with applying patterns to programming and pre-
sented at OOPSLA [Beck 1987].

1994/95 — The “Gang of Four” (Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlis-
sides) published a book containing a large number of design-level patterns aimed at object
oriented programming languages [Gamma 1995].

1997 — Yoder and Baraclow published a paper outlining several security patterns [Yoder 1997].
1.1.2 Resources

A significant amount of research has already been performed in the field of security patterns. This
section lists some of the major contributions to the field and provides a brief description of each
piece of work.

«  Security Design Patterns, Part 1 [Romanosky 2001]. The patterns in this report address
high-level security concerns, such as how to handle communication with untrusted third-
party systems and the importance of multi-layered security. In addition, the patterns in this
report address high-level process issues such as the use of white-hat penetration testing and
addressing simple, high-impact security issues early in the system development and configu-
ration process.

o  Core Security Patterns Book [Steel 2005]. This book concentrates on security patterns for
J2SE, J2EE, J2ME, and Java Card platform applications. The patterns contained in this book
are generally design-level patterns applicable primarily to Java web applications.
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«  Security Patterns: Integrating Security and Systems Engineering [Schumacher 2006]. This
book contains a large number of patterns at varying levels of specificity. The patterns in this
book range from high-level patterns involving the processes used to develop secure systems
to design-level patterns addressing how to create objects with different access privileges.

o  Open Group Guide to Security Patterns [Blakely 2004]. This report contains architectural-
level patterns and design-level patterns focusing on system availability and the protection of
privileged resources. The patterns presented in this report are general patterns applicable to
systems programmed in many different languages.

«  Security Patterns Repository [Kienzle 2003]. This report contains both design-level patterns
applicable to designing and building secure applications and procedural patterns that are ap-
plicable to the process of designing, building, and configuring secure applications.

1.2 Purpose
1.2.1 Problem to Be Solved

The cost of fixing system vulnerabilities and the risk associated with vulnerabilities after system
deployment are high for both developers and end users. Steps to reduce the cost of system main-
tenance and the risk of security vulnerabilities need to be adopted by software development or-
ganizations. While there are a number of best practices available to address the issue of software
security vulnerabilities, these practices are frequently difficult to reuse due to the implementation-
specific nature of the best practices. In addition, greater understanding of the root causes of secu-
rity flaws has led to a greater appreciation of the importance of taking security into account in all
phases in the software development life cycle, not just in the implementation and deployment
phases. Many current best security practices focus on implementation and deployment issues and
so do not address security flaws introduced in earlier phases of the development process.

Various secure design patterns detailed in this report address security issues in the architectural
design, detailed design, and implementation phases of the software development life cycle. In ad-
dition, several of the presented patterns were created by analyzing and generalizing existing,
proven best practices. Some potential new secure design patterns, created by extending existing
design patterns to take security issues into account, are also proposed in this report.

The creation of secure design patterns by generalizing and cataloging existing best practices and
by the extension of existing non-secure design patterns benefits the developers of secure software
products. By using reusable security patterns, developers can reduce the cost associated with pro-
ducing secure products while at the same time reducing the cost and the risk associated with secu-
rity vulnerabilities for both developers and end users.

1.2.2 Approach

The approach taken to define the patterns in this document is to
«  capture a number of demonstrably security-effective techniques from existing designs that
can and should be replicated in other systems

« distill and document these techniques as secure design patterns
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Additionally, several new but unproven patterns are proposed in this document. These patterns are
secure extensions of some well-known patterns described in [Gamma 1995].

Inspirations for the patterns in this document include
o  OpenBSD-derived projects

o gmail and Postfix mail system designs

« relevant recommendations from Kernighan and Pike’s The Practice of Programming [Ker-
nighan 1999]

« well-known basic design patterns from [Gamma 1995]
1.2.3 Intended Audience

The intended audience of this report is software engineers producing software artifacts at varying
levels of abstraction, including architecture, design, and implementation.

The secure patterns in this report are grouped accordingly.

1.3 Scope

Secure design patterns, as described by this report, provide general design guidance to eliminate
the introduction of vulnerabilities into code or mitigate the consequences of vulnerabilities. Se-
cure design patterns are not restricted to object-oriented design approaches but may also be ap-
plied, in many cases, to procedural languages. These patterns are at a higher level of abstraction
than secure coding guidelines.

Secure design patterns differ from security patterns in that they do not describe specific security
mechanisms (such as access control, authentication, and authorization (AAA) and logging), define
secure development processes, or provide guidance on the configuration of existing secure sys-
tems.

Three general classes of patterns are presented in this document:

« Architectural-level patterns. Architectural-level patterns focus on the high-level allocation
of responsibilities between different components of the system and define the interaction be-
tween those high-level components. The architectural-level patterns defined in this document
are
- Distrustful Decomposition
- PrivSep (Privilege Separation)

- Defer to Kernel

«  Design-level patterns. Design-level patterns describe how to design and implement pieces
of a high-level system component, that is, they address problems in the internal design of a
single high-level component, not the definition and interaction of high-level components
themselves. The design-level patterns defined in this document are
- Secure State Machine
- Secure Visitor
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« Implementation-level patterns. Implementation-level patterns address low-level security
issues. Patterns in this class are usually applicable to the implementation of specific func-
tions or methods in the system. Implementation-level patterns address the same problem set
addressed by the CERT Secure Coding Standards [CERT 2009a] and are often linked to a
corresponding secure coding guideline. Implementation-level patterns defined in this docu-

ment are

- Secure Directory
- Pathname Canonicalization

- Input Validation

- Runtime Acquisition Is Initialization

This report does not provide a complete secure design pattern catalog. In the creation of this re-
port, some, but by no means all, best practices used in the creation of secure software were ana-
lyzed and generalized. Future work will extend the catalog of secure design patterns.

1.4 Format and Conventions

The template for describing design patterns used in [Gamma 1995] was used to describe the se-
cure design patterns in this report. The sections in the template are shown in Table 1. Sections
whose names are italicized are optional.

Table 1:  Pattern Elements

Element Description

Intent The problem solved by the design pattern and its general rationale and purpose.

Also Known As Other names for the pattern, if any are known.

Example A real-world example demonstrating the existence of the problem and the need for the
pattern. Throughout the description, we refer to examples to illustrate solutions and
implementation aspects, where this is necessary or useful.

Motivation A description of situations in which the pattern may apply and a more detailed descrip-
tion of the problem that the pattern is intended to solve.

Applicability A general description of the characteristics a program must have for the pattern to be
useful in the design or implementation of the program.

Structure A textual or graphical description of the relationship between the various participants

in the pattern. This provides a detailed specification of the structural aspects of the
pattern, using appropriate notations.

Participants

The entities involved in the pattern.

Consequences

The benefits the pattern provides and any potential liabilities.

Implementation

Guidelines for implementing the pattern. These are only a suggestion, not an immuta-
ble rule. You should adapt the implementation to meet your needs by adding different,
extra, or more detailed steps or by reordering the steps. Whenever applicable we give
UML fragments to illustrate a possible implementation, often describing details of the
example problem.

Sample Code

Code providing an example of how to implement the pattern.

Example Resolved

An example of how the real-world example problem described in the Example section
may be resolved through the use of the secure design pattern.

Known Uses

Examples of the use of the pattern, taken from existing systems.
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2 The Architectural-Level Patterns

2.1 Distrustful Decomposition
2.1.1 Intent

The intent of the Distrustful Decomposition secure design pattern is to move separate functions
into mutually untrusting programs, thereby reducing the

o  attack surface of the individual programs that make up the system

« functionality and data exposed to an attacker if one of the mutually untrusting programs is
compromised

2.1.2 Also Known As
Privilege reduction
2.1.3 Motivation

Many attacks target vulnerable applications running with elevated permissions. This allows the

attacker to access more information and/or allows the attacker to perform more damage after ex-

ploiting a security hole in the application than if the application had been running with more re-

strictive permissions. Some examples of this class of attack are

« various attacks in which Internet Explorer running in an account with administrator privileg-
es is compromised

o security flaws in Norton AntiVirus 2005 that allow attackers to run arbitrary VBS scripts
when running with administrator privileges

« ahbuffer overflow vulnerability in BSD-derived telnet daemons that allows an attacker to run
arbitrary code as root

All of these attacks take advantage of security flaw(s) in an application running with elevated pri-
vileges (root under UNIX or administrator under Windows) to compromise the application and
then use the application’s elevated privileges and basic functionality to compromise other applica-
tions running on the computer or to access sensitive data. The Distrustful Decomposition pattern
isolates security vulnerabilities to a small subset of a system such that compromising a single
component of the system does not lead to the entire system being compromised. The attacker will
only have the functionality and data of the single compromised component at their disposal for
malicious activity, not the functionality and data of the entire application.

2.1.4 Applicability

This pattern applies to systems where files or user-supplied data must be handled in a number of
different ways by programs running with varying privileges and responsibilities. A naive imple-
mentation of this system may allocate many disparate functions to the same program, forcing the
program to be run at the privilege level required by the program function requiring the highest
privilege level. This provides a large attack surface for attackers and leaves an attacker with
access to a system with a high privilege level if the system is compromised.
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A system can make use of the Distrustful Decomposition pattern if
o  the system performs more than one high-level function

« the various functions of the system require different privilege levels
2.1.5 Structure

The general structure of this pattern breaks the system up into two or more programs that run as
separate processes, with each process potentially having different privileges. Each process handles
a small, well-defined subset of the system functionality. Communication between processes oc-
curs using an inter-process communication mechanism such as RPC, sockets, SOAP, or shared
files.

T — i
P AT T
A "'\\-\,, o .
L = / L/ </

. —— — e
Process 1 Process2 o @ @ Process N
S— S o . —,—J»—

SN 4
Q™

Figure 1: General Structure of the Distrustful Decomposition Secure Design Pattern
2.1.6 Participants

These are the participants in the Distrustful Decomposition pattern:

« anumber of separate programs, each running in a separate process. For more complete sepa-
ration, each process could have a unique user 1D that does not share any privileges with the
other user IDs.

« alocal user or a remote system connecting over a network

o possibly the system’s file system

o possibly an inter-process communication mechanism such as UNIX domain sockets, RPC, or
SOAP

2.1.7 Consequences

Distrustful Decomposition prevents an attacker from compromising an entire system in the event
that a single component program is successfully exploited because no other program trusts the
results from the compromised one.

2.1.8 Implementation

This pattern employs nothing beyond the standard process/privilege model already existing in the

operating system. Each program runs in its own process space with potentially separate user privi-

leges. Communication between separate programs is either one-way or two-way.

e  One-way. Only forkQ/exec() (UNIX/Linux/etc.), CreateProcess() (Windows Vista), or
some other OS-specific method of programmatic process creation is used to transfer control.
One-way communication reduces the coupling between processes, making it more difficult
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for an attacker to compromise one system component from another, already compromised
component.

o  Two-way. A two-way inter-process communication mechanism like TCP or SOAP is used.
Extra care must be taken when using a two-way communication mechanism because it is
possible for one process involved in the two-way communication to be compromised and
under the control of an attacker. As with the file system, two-way communication should not
be inherently trusted.

The file system may be a means of interaction, but no component places any inherent trust in the
contents of the file.

2.1.9 Sample Code

An excellent example system where this pattern is applied is the gmail mail system, which is a
complex system with a large combination of interactions between systems, users, and software
components.

The overall structure of the gmail system is shown in Figure 2 [Oppermann 1998].

EMTP from netwaork from local

forwarded message

gmall-sys tem

bk £ maildir £
program delivery

to local

Hit

Figure 2: Structure of the Qmail Mail System.l

1  Source: http://www.nrg4u.com/gmail/the-big-gmail-picture-103-p1.gif. Used with permission from the author.
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The actual source code for the gmail system is omitted here; see the gmail website [Bernstein
2008] for examples.

2.1.10 Known Uses
o The gmail mail system [Bernstein 2008].

o  The Postfix mail system uses a similar pattern [Postfix].

«  Microsoft mentions this general pattern when discussing how to run applications with ad-
ministrator privileges [MSDN 2009b].

Distrustful decomposition for Windows Vista applications using user account control (UAC) is
explicitly addressed in [Massa 2008].

2.2 PrivSep (Privilege Separation)
221 Intent

The intent of the PrivSep pattern is to reduce the amount of code that runs with special privilege
without affecting or limiting the functionality of the program. The PrivSep pattern is a more spe-
cific instance of the Distrustful Decomposition pattern.

2.2.2 Motivation

In many applications, a small set of simple operations require elevated privileges, while a much
larger set of complex and security error-prone operations can run in the context of a normal un-
privileged user. For a more detailed discussion of the motivation for using this pattern, please see
the motivation for the more general Distrustful Decomposition pattern.

Figure 3 provides a detailed view of a system where the PrivSep pattern could be applied and the
security problems that can occur if the PrivSep pattern is not used [Provos 2003]. An implementa-
tion of ftpd is used as an example.

Privileged ftpd Metwork connection
Listen *:21
. (user root)

J A vulnerability that occurs in the program during

. , this stage would result in root compromise
Fork privileged child _

[ Privileged ftpd |~
pre-authentication
(user root)

\ ;

Authentication

aulswI|

Drop privileges

TN,
'/’L!ser privileged |
ftpd
user fred
( )

User Network Data

'

o

Figure 3: Vulnerable ftpd Program
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The security flaw occurs when the privileged server establishes a connection with the as-yet un-
trusted system user and attempts to authenticate the user with a child possessing the same elevated
privileges as the server. A malicious user could at this point exploit security holes in the privi-
leged child and gain control of or access to a process with elevated privileges.

2.2.3 Applicability

In general, this pattern is applicable if the system performs a set of functions that
« do not require elevated privileges
« have relatively large attack surfaces in that the functions

- have significant communication with untrusted sources
- make use of complex, potentially error-prone algorithms

In particular, this pattern is especially useful for system services that must authenticate users and
then allow the users to run interactive programs with normal, user-level privileges. It may be also
be useful for other authenticating services.

2.2.4 Structure

Figure 4 shows the structure and behavior of the PrivSep pattern. Note that this diagram makes
reference to the UNIX Fork() function for creating child processes. When implementing the
PrivSep pattern in a non-UNIX-based OS, a different, OS-specific function would be used in
place of fork(). For example, under various versions of Windows, the CreateProcess() func-
tion is used to spawn a child process.

pavileged Network ti
DDE'"SS - 2 rs connaction
Listen =22
fork unprivileged child
priviloged Request Auth -5
B _oquest A OpenSS ey Exchange -
Auth Result Network - 2
Monitor | -~~~ " "™ | Processing Authentlnatlun’_ aE—J
expot N
swe ="
/'hrk user th\
pﬁ\'i|gﬂ1 user privileged
penSS Hequest PTY OpenSS —
""""" User Network Data
Moni Pass PTY User Request -
AREEE - e----- = | Processing Y

Figure 4: OpenSSH PrivSep Implementation2

2 Source: http://www.citi.umich.edu/u/provos/ssh/priv.jpg.
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2.2.5 Participants

Privileged Server Process

The privileged server process is responsible for fielding the initial requests for functionality that
will eventually be handled by a child process with non-elevated privileges. The privileged server
has an associated privileged userid (often root under UNIX-derived OSs, or administrator
under various versions of Windows).

System User

The system user asks the system to perform some action. This initial request for functionality is
directed by the user to the privileged server. The user can be local or remote. The user can com-
municate with the privileged server via an inter-process communication mechanism such as sock-
ets or SOAP.

Unprivileged Client Process

The unprivileged client is responsible for handling the authentication of the user’s request. Be-

cause it is not yet known if this is a valid request from a trusted user, the privileges of the child

process handling authentication are limited as follows:

«  The child process is given the minimal set of privileges allowed by the host OS. Under the
UNIX privilege model, this is implemented by setting the user ID (UID) of the process to an
unprivileged user ID.

«  The root directory of the child process is set to an unimportant, empty directory or a jail
[Seacord 2008]. This prevents the untrusted child process from accessing any of the files on
the machine running the untrusted child.

User-Privileged Client Process

Once the system user and their request have been authorized, a child process with appropriate us-
er-level privileges is spawned from the privileged server. The user-privileged child process actual-
ly handles the system user’s request. The user-privileged child has its UID set to a local user ID.

2.2.6 Consequences

An adversary who gains control over the child
« isconfined in its protection domain and does not gain control over the parent

« does not gain control of a process possessing elevated privileges, thereby limiting the dam-
age that the adversary can inflict

Additional verification, such as code reviews, additional testing, and formal verification tech-
niques, can be focused on code that is executed with special privilege, which can further reduce
the incidence of unauthorized privilege escalation.

System administration overhead is usually increased to accommodate the management of new
unprivileged user IDs.
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2.2.7 Implementation

The PrivSep pattern consists of two phases, pre-authentication and post-authentication.
«  Pre-authentication. A user has contacted a system service but is not yet authenticated; the
unprivileged child has no process privileges and no rights to access the file system.

The pre-authentication stage is implemented using two entities: a privileged parent process
that acts as the monitor and an unprivileged child process that acts as the slave. The privi-
leged parent can be modeled by a finite-state machine (FSM) that monitors the progress of
the unprivileged child.

«  Post-authentication. The user has successfully authenticated to the system. The child has the
privileges of the user, including file system access, but does not hold any other special privi-
lege.

The general process implemented in the PrivSep pattern is as follows:
1. Create a privileged server. Initial user requests will be directed to this server.

2. When a user request arrives at the server, the server will spawn off an untrusted, unprivi-
leged child to handle the user interaction required during the authentication process.

3. After the user has been authenticated, the server will spawn off another child process with
the appropriate UID to actually handle the user’s request.

The unprivileged child is created by changing its UID or group ID (GID) to otherwise unused IDs.
This is achieved by first starting a privileged monitor process that forks a slave process. To pre-
vent access to the file system, the untrusted child changes the root of its file system to an empty
directory in which no files may be written. The untrusted child process changes its UID or GID to
the UID of an unprivileged user so as to lose its process privileges.

Slave requests to the monitor are performed using a standard inter-process communication me-
chanism.

2.2.8 Sample Code

A simple implementation of the PrivSep pattern using fork(), chroot(), and setuid() under
Linux is as follows.

#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <stdlib.h>

// Define an unused UID.
#define UNPRIVILEGED UID 123456789

// Hardcode the UID of the user. In reality the UID should not be

// hard coded.
#define USER_UID 1000
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// The location of the empty directory to use as the root directory
// for the untrusted child process.
#define EMPTY_ROOT_DIR "/home/sayre/empty _dir"

/**
* This defines the behavior for the spawned child, both the one with
* no privileges and the one with user privileges.
*
* The parameters are:
*
* childUid - The UID to which to assign the spawned child.
*
* sock - The socket the child process will use for communication with
* the privileged parent.
*/

void handleChild(uid_t childUid, int sock) {

// A buffer to read in messages from the socket.
char buffer[100];

// Change the root of the untrusted child’s file system to an empty
// directory, if we are the untrusted child.
if (childuid !'= USER_UID) {
if (chroot(EMPTY_ROOT_DIR) != 0) {
printf("'Cannot change root directory to %s.\n", EMPTY_ROOT_DIR);
exit(7);
}

}
// Immediately set the UID of the child to the user or

// unprivileged UID.

if (setuid(childuid) < 0) {
printf(*'Cannot set UID to %d\n', childUid);
exit(6);

}

// At this point the child no longer has the full privileges of the
// privileged parent.

// Are we the unprivileged child that is used to check
// authorizations?
if (childuid !'= USER_UID) {

// Yes, we are the unprivileged child.

// Ask the privileged parent to verify the credentials of the
// child. Note that for the purposes of this simple example code
// the "credentials" are represented very simply. In a real

// application of the PrivSep pattern the credentials would be
// handled in a much more robust fashion.

send(sock, "VERIFY: MY_CREDS", 17, 0) ;

// Read in the credential verification results from the privileged
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// parent.
int size = recv(sock, buffer, sizeof(buffer), 0) ;

// Was there an error reading the verification results from the
// parent?
if (size < 0) {
printf("'Read error in parent.\n");
exit(2);
}

// Make sure the results string we have been sent is null
// terminated.
buffer[sizeof(buffer)-1] = "\0";

// \Were our credentials "authenticated"?
it (stremp('yes'™, buffer) 1= 0) {

// Authorization denied. Kill the child process with an
// appropriate error code.
printf('Authorization denied.\n");
exit(b);
}

// Our credentials were authorized.
printf(""Authorization approved.\n");

// The unprivileged child now terminates. The privileged parent
// will now spawn a child with user privileges.
exit(0);

}

// We are the child with the user®s UID. Our authorization has
// already been approved.
else {
// Do the actual work of the verified child here...
// ..
// ..
// ...
}
}

int main(int argc, const char* argv[]) {

// Create the socket pair that the parent and child will use to

// communicate.

int sockets[2];

ifT (socketpair(PF_UNIX, SOCK_STREAM, AF_LOCAL, sockets) != 0) {
// Creating the socket pair failed. Terminate the process.
exit(l);

}

// A buffer to read in messages from the socket.
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char buffer[100];

// Initially the spawned child should change its UID to an ID with
// no privileges.
uid_t childUid = UNPRIVILEGED_UID;

// Fork into a parent and an unprivileged child process.
pid_t pID = fork(Q);

// Am 1 the child?

if (pID == 0) {
// Use an unprivileged child to do the authorization.
handleChild(childUid, sockets[0]);

}

// Did the fork fail?

else it (pID < 0) {
printf("'Fork failed\n™);
exit(3);

}

// 1 am the parent.
else {

// As this point the parent expects the untrusted child to try to
// get authorized.

// Get the socket for the parent process.
int sock = sockets[1];

// Receive an authorization request from the child.
int size = recv(sock, buffer, sizeof(buffer), 0) ;

// Was there an error reading the authorization request message?
if (size < 0) {

printf("'Read error in parent.\n");

exit(4);
}

// Make sure the string we have been sent is null terminated.
buffer[sizeof(buffer)-1] = "\0";

// Do the "authorization” of the child. Note that in this simple
// example the authorization process has been trivialized. In a
// real application of the PrivSep pattern a much more robust
// authorization process would be used.

if (stremp("VERIFY: MY_CREDS", buffer) == 0) {

// Authorization succeeded. Tell the child.
send(sock, "yes", 4, 0);

// Because the "authorization" succeeded, spawn off a new child
// with the user®s UID that will do the real work.
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childUid = USER_UID;

// Fork into a parent and an unprivileged child process.
pid_t pID = fork(Q);

// Am | the child?

if (pID == 0) {
handleChild(childUid, sockets[0]);

}

// Did the fork fail?

else if (pID < 0) {
printf("'Fork failed\n™);
exit(3);

}

// 1 am the parent.
else {

// Do some other parent operations, if needed...
// ...
/7 ...
/7 ...

}
}

else {
// Authorization failed. Tell the child.
send(sock, "no", 4, 0) ;
b
b
b

2.2.9 Known Uses

OpenBSD: sshd, bgpd/ospfd/ripd/rtadvd, X window server, snmpd, ntpd, dhclient,
tcpdump, etc.

2.3 Defer to Kernel

231 Intent

The intent of this pattern is to clearly separate functionality that requires elevated privileges from
functionality that does not require elevated privileges and to take advantage of existing user veri-
fication functionality available at the kernel level. Using existing user verification kernel functio-
nality leverages the kernel’s established role in arbitrating security decisions rather than reinvent-
ing the means to arbitrate security decisions at the user level.

The Defer to Kernel pattern is a specialization of the following patterns:
o  CERT’s Distrustful Decomposition secure design pattern

«  the Reference Monitor security pattern by Schumacher et al.
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The Reference Monitor is a general pattern that describes how to define an abstract process
that intercepts all requests for resources and checks them for compliance with authorizations
[Schumacher 2006].

The primary difference between the Defer to Kernel pattern and the Reference Monitor pattern is
that the Defer to Kernel pattern focuses on the use of user verification functionality provided by
the OS kernel, whereas the Reference Monitor pattern does not specify the authorization method.

2.3.2 Motivation

A primary motivation for this pattern is to reduce or avoid the need for user programs that run
with elevated privileges and are consequently susceptible to privilege escalation attacks. In
UNIX-based systems, this means the reduction or avoidance of setuid programs. Under Win-
dows, this means the avoidance of user programs running as administrator.

In addition, this pattern focuses on the reuse of user verification functionality provided by the OS
kernel. The reuse of existing kernel functionality to verify users has these advantages:

«  Developers do not have to write their own user identification and verification functionality.

«  Testing and validation has already been performed on the existing kernel user identification
and verification functionality.

« Itisamore portable solution because it allows each OS to verify users in a manner consis-
tent with each platform.

For a more detailed discussion of the motivation for using this pattern, please see the motivation
for the more general Distrustful Decomposition pattern.

2.3.3 Applicability

The Defer to Kernel pattern is applicable if the system has the following characteristics:
o  The system is run by users who do not have elevated privileges.

« Some (possibly all) of the functionality of the system requires elevated privileges.

«  Prior to executing functionality that requires elevated privileges, the system must verify that
the current user is allowed to execute the functionality.

In particular, for systems running on UNIX-based operating systems, the Defer to Kernel pattern
is applicable if the system has the following characteristics:

o  The program must run under a special UID to perform some or all of its tasks.
«  The program accepts files or job requests submitted by users.

o  For local users, the program needs to know which UID or GID submitted each file or job
request, for access control or for accounting.

«  For non-local users, the program uses some other user verification and logging mechanism.
234 Structure

The Defer to Kernel pattern implements a basic client-server architecture. The server runs with
elevated privileges, accepts user job requests from clients, and, when possible, uses existing ker-
nel functionality to verify users.
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The general structure of the Defer to Kernel pattern is shown in Figure 5.

(4) Server

Response -

Client

(1) Request

(2) User ID

Verification

Request (3) User ID
Verification

Results

OS Kernel

Figure 5: General Structure of the Defer to Kernel Pattern

Figure 6 shows the structure of the Defer to Kernel pattern when the system has the following
characteristics:
e  The system is implemented under a UNIX-based OS.

o  The system uses getpeereid() for user verification.
o  The server only accepts files and job requests from local users.

Privileged daemon (2) 1isten() /accept () User privileged

(user root) Client program

(user fred)

/var/foo/socket (3) connect ()

(1) socket () /bind ()

(4) getpeereid()

Figure 6: Example Structure of Defer to Kernel Pattern

2.35 Participants

These are the participants in the Defer to Kernel pattern:
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«  Client program. The client program runs with standard user-level privileges. It sends job re-
quests to the server to perform work for which the client lacks sufficient privileges.

o  System kernel. The system kernel provides the following:

- an inter-process communication mechanism used for communication between the client
and the server

- user identity verification and access functionality. Preexisting functionality implemented
in the kernel is used to get the ID of a user connected to the server and to check to see if
the user’s submitted job request is permitted to run on the server.

o Server program. The server program monitors an allocated instance of the IPC mechanism,
reads incoming job requests from clients, and checks to see if a client’s submitted jobs
should be run on the server.

2.3.6 Consequences

Applications that previously relied on a single executable (setuid executable on UNIX-based
OSs, executable running as administrator under Windows) must be re-architected as a
client/server system.

Additional system complexity is added because of the added communication between the client
and server.

2.3.7 Implementation

The general implementation of the Defer to Kernel pattern is as follows:

1. The server starts up. It accepts client requests via some known mechanism.

2. The client submits a request to the server. Included with the request is information identify-
ing the client. This information is encoded and/or sent using an existing user identification
mechanism inherent to the OS’s kernel.

3. The server gets the user request and uses some kernel-level mechanism to determine whether
to satisfy the user’s request or to reject the request.

A more specific implementation suitable for UNIX-based OSs is as follows:
1. The server (cron job, print job, etc.) opens a UNIX domain socket at a known path. All client
requests are directed to this UNIX domain socket.

2. The client connects to this socket to submit a request. Because UNIX domain sockets are
being used, information about the client user’s UID and GID is automatically included with
the message. Note that this is performed by the underlying socket code and does not have to
be explicitly programmed into the client.

3. The server, upon receiving the connect(), invokes a system call such as getpeereid() to
identify the user making the request.

4.  As with the general pattern, the server uses the user identification information from the pre-
vious step to determine whether to satisfy the user’s request.

Note that this system only addresses local users and not those connecting remotely over a net-
work.
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Linux does not include a getpeereid() function. However, getpeereid() can easily be im-
plemented as follows:

/**
* Get the user ID and group ID of the user connected to the other end
* of the given UNIX domain socket.
*
@param sd The UNIX domain socket.
@param uid Where to store the user ID of the user connected to the
other end of the given UNIX domain socket. Memory for uid must be
allocated by the caller.
@param gid Where to store the group ID of the user connected to the
other end of the given UNIX domain socket. Memory for gid must be
allocated by the caller.

o X X % % ok X %

@returns -1 on fTailure, 0 on success.

**/

int getpeereid(int sd, uid_t *uid, gid_t *gid) {
struct ucred cred;

int len = sizeof (cred);

ifT (getsockopt(sd,SOL_SOCKET,SO_PEERCRED, &cred,&len)) {
return -1;

3

*uid = cred.uid;
*gid = cred.gid;
return O;

}

The underlying design of Windows security makes it simple to implement the Defer to Kernel
pattern. Under Windows, every process or thread has an associated access token containing
(among other things) the security identifier (SID) for the user owning the process’s account and
the SIDs for the user’s groups. A server can be set up as a Windows service. A Windows service
can be secured by turning it into a securable object. When creating a securable object it is possi-
ble to associate an access control list with the securable object. The access control list contains
the SIDs of the client processes that are allowed to connect to the server, that is, the Windows
service.

For more information about Windows securable objects, see the online tutorial “Access Control
Story: Part I” [Tenouk 2009].

2.3.8 Sample Code

Under Linux, a sketch of the server portion of the Defer to Kernel design pattern is similar to the
following:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

19 | CMU/SEI-2009-TR-010


http://www.tenouk.com/ModuleH.html�

#
#
#
#

#
#
#
#

/

}

include <string.h>

include <unistd.h>

include <stdio.h>

include <linux/un_h>

define SOCKET_ERROR -1

define BUFFER_SIZE 100

define QUEUE_SIZE 5

define SOCKET_PATH /tmp/myserver'’

*x

* Get the user ID and group ID of the user connected to the other end
* of the given UNIX domain socket.

*

* @param sd The UNIX domain socket.

* @param uid Where to store the user ID of the user connected to the
* other end of the given UNIX domain socket. Memory for uid must be
* allocated by the caller.

* @param gid Where to store the group ID of the user connected to the
* other end of the given UNIX domain socket. Memory for gid must be
* allocated by the caller.

*

*

@returns -1 on failure, 0 on success.

**/

nt getpeereid(int sd, uid_t *uid, gid_t *gid) {
struct ucred cred;

socklen_t len = sizeof (cred);

if (getsockopt(sd,SOL_SOCKET,SO_PEERCRED, &cred,&len)) {
return -1;

*
c
o

|

= cred.uid;
*gid = cred.gid;

return O;

/* This refers to a user validation function. This will not be

implemented in this example.

The purpose of this function is to check to see if the request of
the connecting user should be read, that is, it checks to see

if the connecting user is allowed to submit requests (any request)
to the server. Note that validateUser() makes use of the user ID and
the group ID of the user, both of which are gathered using the
kernel-level getpeereid() function.

The validity of the actual user request will be checked with the
validateRequest() function.

*/
extern int validateUser(uid_t uid, gid_t gid);

2

0 | CMU/SEI-2009-TR-010



/*
The purpose of this function is to see if the server should honor
the request of a connected user. Note that as with validateUser(),
validateRequest() makes use of the user ID and the group ID of the user
to check to see if the connected user has the rights to make the server
handle the request.

This will not be implemented in this example.
*/
extern int validateRequest(uid_t uid, gid_t gid, char *request);

int main(int argc, char* argv[]) {
int hSocket,hServerSocket; /* handle to socket */
struct hostent* pHostinfo; /* holds info about a machine */
struct sockaddr_un Address; /* Internet socket address struct */
int nAddressSize=sizeof(struct sockaddr_in);
char pBuffer[BUFFER_SIZE];

/* Make a UNIX domain socket for incoming client requests. */
hServerSocket=socket(AF_UNIX,SOCK_STREAM,O0);

it (hServerSocket == SOCKET_ERROR) {
puts(""\nCould not make a socket\n™);
return O;

}

/* Fill in address structure defining how to set up the
UNIX domain socket. */

Address.sun_family = AF_UNIX;

strcpy(Address.sun_path, SOCKET_PATH);

unlink(Address.sun_path);

/* Bind the incoming request socket to a "well-known" path. */
/* In this simple example the "well-known"™ path is hard-coded. */
if(bind(hServerSocket, (struct sockaddr*)&Address,sizeof(Address))

== SOCKET_ERROR) {

puts(*"\nCould not connect to host\n");

return O;

}

/* get port number */
getsockname(hServerSocket,
(struct sockaddr *) &Address,
(socklen_t *)&nAddressSize);

/* Establish the listen queue for the incoming request socket. */
if (listen(hServerSocket,QUEUE_SIZE) == SOCKET_ERROR) {
puts(*"\nCould not listen\n");
return O;

}

/* Get and handle client requests. */

for(G;) {
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/* Get a user request via an incoming connection. */
hSocket=accept(hServerSocket, (struct sockaddr*)&Address,
(socklen_t *)&nAddressSize);

/* Figure out who just connected. */

uid_t connectedUID;

gid_t connectedGID;

if (getpeereid(hSocket, &connectedUID, &connectedGID) != 0) {

/* We cannot figure out who connected. Boot the connection. */

puts(**Cannot figure out who connected. Booting them.');

if(close(hSocket) == SOCKET_ERROR) {
puts(""ERROR: Could not close socket\n™);
return O;

}

/* Get more incoming connections. */
continue;

}

/* Validate the user that is going to make a request. */
ifT (IvalidateUser(connectedUID, connectedGID)) {

puts('User not validated. Booting them.™);

iT(close(hSocket) == SOCKET_ERROR) {
puts("'ERROR: Could not close socket\n');
return O;

}

/* Get more incoming connections. */
continue;

}

/* Get the user"s request. */

char *currRequest;

/* .
. (The request is pointed to by currRequest.)
4

/* Validate the connected user’s request. */
if (lvalidateRequest(connectedUID, connectedGID, currRequest)) {

puts(“'User issued invalid request. Booting them.');
if(close(hSocket) == SOCKET_ERROR) {

puts(""'ERROR: Could not close socket\n');

return O;

}

/* Get more incoming connections. */
continue;
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/* Process the user®s request. */
/* .

4

/* Close the socket connected to the current user. */
if (close(hSocket) == SOCKET_ERROR) {
puts(""'ERROR: Could not close socket\n');
return O;
}
}

Under Linux, a sketch of the client portion of the Defer to Kernel design pattern is similar to the
following:

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>
#include <string.h>
#include <unistd.h>
#include <stdio.h>
#include <linux/un.h>
#include <stdlib.h>

#define SOCKET_ERROR -1
#define BUFFER_SIZE 100
#define SOCKET_PATH "'/tmp/myserver"'

int main(int argc, char* argv[]) {
int hSocket; /* handle to socket */
struct sockaddr_un Address; /* internet socket address struct */
char pBuffer[BUFFER_SIZE];
unsigned nReadAmount;

/* Make a UNIX domain socket to use to talk with the server. */
hSocket=socket(AF_UNIX,SOCK_STREAM,0);
if (hSocket == SOCKET_ERROR) {

puts(""\nCould not make a socket\n");

return O;

}

/* fill in address structure defining how to set up the
UNIX domain socket. */

Address.sun_family=AF_UNIX;

strcpy(Address.sun_path, SOCKET_PATH);

/* Connect to host via a "well known"™ path. */
/* In this simple example the "well-known' path is hard-coded. */
if (connect(hSocket, (struct sockaddr*)&Address,sizeof(Address))
== SOCKET_ERROR) {
puts(*"\nCould not connect to host\n");
return O;
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}

/* Communicate request to the server. */
/* .

Y
/* Close socket used to communicate with the server. */
if (close(hSocket) == SOCKET_ERROR) {

puts('"\nCould not close socket\n™);
return O;

}
}

See “Securable Objects” [MSDN 2009a] for information regarding how to implement the Defer to
Kernel pattern under Windows.

2.3.9 Known Uses
ucspi-unix

Securable Objects in Windows

24 | CMU/SEI-2009-TR-010


http://msdn.microsoft.com/en-us/library/aa379557.aspx�
http://www.superscript.com/ucspi-ipc/intro.html�
http://msdn.microsoft.com/en-us/library/aa379557.aspx�

3 The Design-Level Patterns

3.1 Secure State Machine
3.11 Intent

The intent of the Secure State Machine pattern is to allow a clear separation between security me-
chanisms and user-level functionality by implementing the security and user-level functionality as
two separate state machines.

3.1.2 Also Known As
Secure State
3.1.3 Motivation

Intermixing security functionality and typical user-level functionality in the implementation of a
secure system can increase the complexity of both. The increased complexity makes it more diffi-
cult to test, review, and verify the security properties of the implementation, increasing the like-
lihood of introducing a vulnerability.

Also, a tight coupling between the security functionality and the user-level functionality makes it
difficult to change and modify the system’s security mechanisms.

3.14 Applicability

This pattern is applicable if

« the user-level functionality lends itself to implementation using the Gang of Four State pat-
tern [Gamma 1995]; that is, the user-level functionality can be cleanly represented as a finite
state machine

«  the access control model for the state transition operations in the user-level functionality
state machine can also be represented as a state machine. Note that in a degenerate case the
access control model could be represented by a state machine with a single state.

3.1.5 Structure

Figure 7 depicts the structure of the Secure State Machine pattern.
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Figure 7: Secure State Machine Pattern Structure

3.1.6 Participants

o  SecurityContext (ExampleSystem)

SecurityConcreteStatel
+ Handle()

UserFunctionConcreteState2

- Defines the interface of interest to clients. All client operations are initially handled by
an instance of SecurityContext.

- As with the original Gang of Four State pattern [Gamma 1995], SecurityContext main-
tains an instance of a Security-State subclass that defines the current state from a securi-

ty perspective.

- Maintains an instance of UserFunctionContext; that is, the state machine implementing
the non-security, user-level functionality.

- Acts as a proxy for the instance of UserFunctionContext.

o  SecurityState (SecurityState)

- Defines an interface representing the possible operations handled by the security state
machine. Note that UserFunctionState must share the same interface; that is, it must

handle the same possible operations as SecureState.

o  SecurityConcreteState (LoggedOut, LoggedinAdmin, LoggedInClerk, Locked)

- Each subclass of SecurityState implements the security state-dependent behavior for

each operation.

The components of the user-level functionality state machine are exactly the same as those in the

Gang of Four State pattern.

«  UserFunctionContext (UserFunctionsMachinge)
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- Defines all of the same operations as SecurityContext so that components of the security
state machine can forward operation requests to the user-level functionality state ma-
chine when appropriate.

- Has a private constructor to prevent outside access to the functionality of the user-level
state machine. Only a SecurityContext can create a new UserFunctionContext.

«  UserFunctionState (UserFunctionState)

- Has the same interface as SecurityState.
« UserFunctionConcreteState (UserFunctionConcreteStatel, UserFunctionConcreteState2)

- Inamanner similar to SecurityConcreteState, each subclass of SecurityState implements
the user-level state-dependent behavior for each operation.

3.1.7 Consequences

In addition to the set of consequences associated with the general State pattern, the Secure State
Machine pattern has these additional consequences:

o ltclearly separates security mechanisms from user-level functionality. The use of this pattern
requires that the security mechanisms be explicitly implemented in the security state ma-
chine and the user functionality of the system be explicitly implemented in the user-level
functionality state machine. This makes it easy to

- test and verify the security mechanisms separately from the user-level functionality. Be-
cause the security functionality is implemented separately from the user-level functional-
ity, more rigorous testing and verification techniques can be applied to the security state
machine than to the user-level functionality state machine.

- change or replace the security mechanism. Because the security functionality is separate
from the user-level functionality, a new security implementation could be implemented
with less effort than would be required if the existing security mechanisms were inter-
leaved with the user-level functionality.

« It prevents programmatic access to the user-level functionality that avoids security. Because
only the security state machine can create an instance of the user-level functionality state
machine, all interaction with the user-level functionality state machine must first pass
through the security state machine, consequently defeating one class of programmatic attack.

3.1.8 Implementation

In addition to the implementation considerations associated with the Gang of Four State pattern
[Gamma 1995], the Secure State Machine pattern has the following implementation consideration.

Who forwards operations on to the user-level state machine? The operations handled by the secu-
rity state machine can be forwarded on to the user-level state machine by either the SecurityCon-
text instance or the SecurityConcreteState instance.

«  SecurityContext instance. The forwarding of operations to the user-level functionality state
machine can be handled in the SecurityContext instance by defining the operation methods
in SecurityState to return a boolean value indicating whether the operation should be for-
warded. The corresponding operation methods in SecurityContext would then use this return
value to determine whether to forward the operation. This method is used in the example on
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this page. It is recommended over performing the forwarding in the SecurityConcreteState
instance because it allows the user functionality state machine to be completely hidden with-
in the SecurityContext instance.

«  SecurityConcreteState instance. If the SecurityContext provides a method by which a Securi-
tyConcreteState can access the user-level functionality state machine, the SecurityConcre-
teState can forward the operation directly.

3.1.9 Sample Code

This example of using the Secure State Machine pattern provides a skeleton of the code for im-
plementing a system with the following behavior:

o Auser must log in before using the system.
« Ifthere are five failed login attempts, the user’s account will be locked.

«  Each user will be handled by a separate state machine. The allocation of users to state ma-
chines will be handled by some other portion of the system.

«  The user-level functionality is abstractly represented as op1, op2, op3, login, and log-
out.

«  For security reasons, op3 may be performed only 50 times in a session. If op3 is performed
more than 50 times, the user will be automatically logged out.

«  Performing op2 requires that the user have the role of administrator. Everyone else has the
role of clerk.

A collaboration diagram describing the basic behavior of the example code is shown in Figure 8.

X

Calling Program

Send Action Reguest to State Machine

:ExampleSystem
" F

Check Permission of User to Perform Action

orward Action on to User Functionality State Machine

Change Security State

_state:SecurityState userMachine:UserFunctionsMachine

Forward Action to Concrete User State Instance

Change User State

_state:UserFunctionState

Figure 8: Secure State Machine Example Code Collaboration Diagram
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This class represents the credentials of the user associated with a state machine. This class will not
be sketched out in this example.

class UserCredentials;

This class represents a string that has been encrypted. This class will not be sketched out in this
example.

class EncryptedString;

This is the forward declaration abstract class representing the states of the security state machine.
This class will be sketched out in the example.

class SecurityState;

This class implements the security state machine for the system and acts as a proxy for the state
machine that actually implements the user-level functionality.

class ExampleSystem {
public:

// Create a new example system state machine for the given user.
ExampleSystem(UserCredentials user);

// Someone is trying to log onto the system as the current user.
void login(EncryptedString password);

// The user is logging out.
void logout();

// The user is attempting to perform one of the three user-level
// system operations.

void opl();

void op2();

void op3(Q);

private:

// Track the current state of the security state machine.
SecurityState* _state;

// Change the current state in the controller.
void changeState(SecurityState*);

// Let the security state machine change the current state in the
// controller.

friend class SecurityState;

// Track the user associated with the security state machine.
UserCredentials _user;

// Get the user associated with the security state machine.
const UserCredentials getUser();
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// Track the state machine that actually implements the user

// functionality. The security state machine acts as a proxy for
// the user functionality state machine.

UserFunctionsMachine userMachine;

}:
The methods of the SecurityContext are defined as follows.

ExampleSystem: :ExampleSystem(UserCredentials user) {

// Initially the user is logged out.
_state = LoggedOut: :instance(user);

// We need to save the user we are dealing with.
_user = user;

// Create the user-level state machine for which we are a proxy.
userSystem = UserFunctionsMachine(user);

}

void ExampleSystem::login(EncryptedString password) {
// Forward the operation if appropriate.
if (_state->login(this, password)) {
userMachine->login(password);
}
}

void ExampleSystem::logout() {
// Forward the operation if appropriate.
if (_state->logout(this)) {
userMachine->logout();
}
}

void ExampleSystem::opl() {
// Forward the operation if appropriate.
if (_state->opl(this)) {
userMachine->0p1();
}
}

void ExampleSystem::op2() {
// Forward the operation if appropriate.
if (_state->op2(this)) {
userMachine->0p2();
}
}

void ExampleSystem::op3() {
// Forward the operation if appropriate.
if (_state->0p3(this)) {
userMachine->0p3Q);

}
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}

This is the declaration of the abstract class defining the interface for the state classes defining the
states of the security state machine.

class SecurityState {
public:

virtual bool login(ExampleSystem* controller, EncryptedString password);
virtual bool logout(ExampleSystem* controller);

virtual bool opl(ExampleSystem* controller);

virtual bool op2(ExampleSystem* controller);

virtual bool op3(ExampleSystem* controller);

protected:

void changeState(ExampleSystem* controller, SecurityState* newState);
}:
The security model for this example has four states:
« NotLoggedIn. The user is not logged in.
o LoggedInAdmin. The user is logged in as an administrator.
o LoggedInClerk. The user is logged in as a clerk.
o  Locked. The user’s account has been locked.

The default implementation of the security state methods is as follows. These statements should
be redefined by the concrete state classes. In the default implementation, the operation is never
forwarded on to the user-level functionality state machine.

bool SecurityState::login(ExampleSystem* controller,

EncryptedString password) { return false; }
bool SecurityState::logout(ExampleSystem* controller) { return false; }
bool SecurityState::opl(ExampleSystem* controller) { return false; }
bool SecurityState::op2(ExampleSystem* controller) { return false; }
bool SecurityState::op3(ExampleSystem* controller) { return false; }

changeState() is common to all concrete state classes.

void SecurityState: :changeState(ExampleSystem* controller,
SecurityState* newState) {
controller->changeState(newState);

}
Here is the definition of the concrete NotLogged In state class.
class NotLoggedIn : public SecurityState {
public:
// Get an instance of this state for the current user. Each user

// will have a single instance of each security state associated
// with them. This ensures that each user will be associated with
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// one and only one security state machine.
static SecurityState* instance(UserCredentials user);

// When the user is not logged in, all they can do is try to log
// in.
virtual bool login(ExampleSystem* controller, EncryptedString password);

private:

// This state will track the number of failed login attempts.
unsigned int numFailedLogins;

¥
Here are the method bodies of the NotLoggedIn state class.

Create a NotLogged In state. This initializes the number of failed login attempts.

NotLoggedIn: :NotLoggedIn() {
numFailedLogins = O;

}
Handle a user login.

bool NotLoggedlIn::login(ExampleSystem* controller, EncryptedString password)
{

// Try to validate the user with the password.
if (controller->getUser() .validate(password)) {

// The current user correctly entered their password.

// Clear the bad password count.
numFailedLogins = O;

// They user is now logged in. Choose the proper login state based
// on the user"s role.
if (controller->getUser().isAdministrator()) {
changeState(controller, LoggedInAdmin::instance());
}
else {
changeState(controller, LoggedInClerk::instance());

}

// The user has now logged in. Handle the user functionality
// associated with a login by passing the login operation on to
// the user functionality machine.

return true;

}

else {
// The current user incorrectly entered their password.

// Track the failed login.
numFai ledLogins++;
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// Has the user failed their login too many times.
if (numFailedLogins >= 5) {

// Reset the # of failed logins.
numFailedLogins = O;

// Lock the user’”s account.
changeState(controller, Locked::instance());

// Note that because the security state machine determined that
// the security requirements were not met, the login operation
// is not passed on to the user functionality machine.
return false;
}
}
}

Here is the definition of the concrete Locked state class.

class Locked : public SecurityState {
public:
static SecurityState* instance(UserCredentials user);

// For this simple example, once a user®s account is locked it
// cannot be unlocked. Once the user®s account is locked, they
// cannot do anything. No operations are forwarded to the user
// functionality machine.

};
Here is the definition of the concrete Logged InAdmin state class

class LoggedInAdmin : public SecurityState {
public:

static SecurityState* instance(UserCredentials user);
LoggedInAdmin();

// A logged-in administrator can perform all operations other than
// logging in again.

bool logout(ExampleSystem* controller);

bool opl(ExampleSystem* controller);

bool op2(ExampleSystem* controller);

bool op3(ExampleSystem* controller);

private:
// Keep track of the number of times the user has performed
// op3.

unsigned int op3Count;

}:
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Here are the method bodies of the Logged InAdmin state class.

// Create a LoggedInAdmin state. This initializes the count of the
// number of times op3 was performed.
LoggedInAdmin: :LoggedInAdmin() {
op3Count = O;
}

bool LoggedInAdmin::logout(ExampleSystem* controller) {

// Just move to the logged out state.
changeState(controller, LoggedOut::instance());

// Handle user functionality actions for the logout operation.
return true;

}

bool LoggedInAdmin::opl(ExampleSystem* controller) {
// Based on the current state of the security machine we know that
// this operation is valid. Forward it on to the user functionality
// machine.
return true;

}

bool LoggedInAdmin::op2(ExampleSystem* controller) {
// Based on the current state of the security machine we know that
// this operation is valid. Forward it on to the user functionality
// machine.
return true;

}
bool LoggedInAdmin: :op3(ExampleSystem* controller) {

// The user has done op3 one more time. Track iIt.
op3Count++;

// Has the user exceeded their quota of # of times they can do
// op3?
if (op3Count > 50) {

// Reset the count of # of times they performed op3 during this
// login session.
op3Count = O;

// Log out the user. Note that this calls the controller’s logout
// method, which will result in both the security machine and the
// user-level functionality machine handling the logout

// operation.

controller->logout();

// Stop processing the op3 operation.
return false;
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// IT we get here the security criteria for op3 have been
// met. Forward op3 on to the user functionality machine.
return true;

¥
Here is the definition of the concrete LoggedInClerk state class.

class LoggedInClerk : public SecurityState {
public:

static SecurityState* instance(UserCredentials user);
LoggedInClerk();

// A logged in clerk can perform all operations other than
// logging in again and op2.

bool logout(ExampleSystem* controller);

bool opl(ExampleSystem* controller);

bool op3(ExampleSystem* controller);

private:

// Keep track of the number of times the user has performed
// op3.
unsigned int op3Count;

};
Here are the method bodies of the LoggedInClerk state class.

// Create a LoggedInClerk state. This initializes the count of the
// number of times op3 was performed.
LoggedInClerk: :LoggedInClerk() {
op3Count = O;
}

bool LoggedInClerk::logout(ExampleSystem* controller) {

// Just move to the logged out state.
changeState(controller, LoggedOut::instance());

// Handle user functionality actions for the logout operation.
return true;

}

bool LoggedInClerk::opl(ExampleSystem* controller) {
// Based on the current state of the security machine we know that
// this operation is valid. Forward it on to the user functionality
// machine.
return true;

}
bool LoggedInClerk::op3(ExampleSystem* controller) {

// The user has done op3 one more time. Track it.
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op3Count++;

// Has the user exceeded their quota of # of times they can do
// op3?
if (op3Count > 50) {

// Reset the count of # of times they performed op3 during this
// login session.
op3Count = 0O;

// Log out the user. Note that this calls the controller’s logout
// method, which will result in both the security machine and the
// user-level functionality machine handling the logout

// operation.

controller->logout();

// Stop processing the op3 operation.
return false;

}

// IT we get here the security criteria for op3 have been
// met. Forward op3 on to the user functionality machine.
return true;

}

This is the controller for the user-level functionality state machine. Note that only the security
state machine can create an instance of the user-level functionality state machine.

class UserFunctionsMachine {
public:

// Someone is trying to log onto the system as the current user.
void login(EncryptedString password);

// The user is logging out.
void logout();

// The user is attempting to perform one of the three user-level
// system operations.

void opl();

void op2Q);

void op3(Q);

private:
// Only the security state machine can create an instance of the
// user-level functionality machine. This helps prevent direct
// access to the user-level functionality machine.

friend class ExampleSystem;

// Create a new user functionality state machine for the given user.
UserFunctionsMachine(UserCredentials user);
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3.1.10 Known Uses

“Method and apparatus for secure context switching in a system including a processor and cached
virtual memory” (United States Patent Application 20070260838).

3.2 Secure Visitor
3.2.1 Intent

Secure systems may need to perform various operations on hierarchically structured data where
each node in the data hierarchy may have different access restrictions; that is, access to data in
different nodes may be dependent on the role/credentials of the user accessing the data. The Se-
cure Visitor pattern allows nodes to lock themselves against being read by a visitor unless the visi-
tor supplies the proper credentials to unlock the node. The Secure Visitor is defined so that the
only way to access a locked node is with a visitor, helping to prevent unauthorized access to
nodes in the data structure.

3.2.2 Motivation

As with the Secure State Machine pattern, the primary motivation of the Secure Visitor pattern is
to provide a clean separation between security considerations and user-level functionality. The
Secure Visitor pattern allocates all of the security considerations to the nodes in the data hie-
rarchy, leaving developers free to write visitors that only concern themselves with user-level func-
tionality.

Making the nodes in the data hierarchy solely responsible for security functionality makes it more
feasible to test and verify the security functionality more rigorously than the user-level functional-
ity. It also frees the user functionality developers from having to reimplement security functionali-
ty each time a new visitor is developed, thereby avoiding the creation of new security holes.

3.2.3 Applicability

This pattern is applicable if
«  the system possesses hierarchical data that can be processed using the original Gang of Four
Visitor pattern [Gamma 1995]

« various nodes in the hierarchical data have different access privileges
3.24 Structure

Figure 9 shows the structure of the Secure Visitor pattern.
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Visitor

+ VisitDataNodeTypel (nodeToVisit : UnlockedDataNodeTypel)
+ VisitDataNodeType2(nodeToVisit : UnlockedDataNodeType2)

ConcreteVisitorl ConcreteVisitor2
+ VisitDataNodeTypel(nodeToVisit : UnlockedDataNodeTypel) + VisitDataModeTypel{nodeToVisit : UnlockedDataModeTypel)
+ VisitDataNedeType2(nodeToVisit : UnlockedDataNodeType2) + VisitDataModeType2(nodeToVisit : UnlockedDataModeType2)

LockedDataNode
— : UserCredentials
+ accept(v : Visitor, user : UserCredentials) ——

# checkCredentials(user : UserCredentials) : bool
# unlock() : UnlockedDataNode

LockedDataNodeTypel LockedDataNodeType2
+ accept(v : Visitor, user : UserCredentials) + accept(v : Visitor, user : UserCredentials)
- unlock() : UnlockedDataMedeTypel - unlock() : Unlocked DataNodeType2

UnlockedDataNode

+ accessorl()
+ accessor2()

UnlockedDataNodeTypel UnlockedDataNodeType2

+ accessor2al) + accessor2b()

Figure 9: Secure Visitor Pattern Structure

3.25

Participants

These are the participants in the Secure Visitor pattern. (The class in the code presented in the
Sample Code section corresponding to the listed participant appears in parentheses after the par-
ticipant.)

Visitor (HierarchicalDataVisitor). The Visitor participant in the secure visitor pattern is al-
most exactly the same as the Visitor participant in the standard Visitor pattern. The primary
difference in the patterns is that the various visit methods take unlocked node objects in the
Secure Visitor pattern, whereas the visit methods in the standard Visitor pattern simply take
a node object (the standard Visitor pattern has no concept of locked and unlocked data
nodes).

ConcreteVisitor. As with the standard Visitor pattern, the ConcreteVisitor classes imple-
ment the operations defined in the abstract Visitor class.

LockedDataNode (LockedDataNode). The LockedDataNode class defines an accept()
operation that accepts a visitor. In addition, the LockedDataNode class also defines an opera-
tion for checking a user’s credentials and for unlocking the current locked node. Note that a
locked node presents no public operations for viewing the data in the node or changing the
data in the node. All access to the node must be directed through the node’s accept() op-
eration. The accept() operation will check the user’s credentials. If the credentials are valid
for the user to view the data in the current node, the node will unlock itself using the un-
lock() operation and pass the unlocked version of itself to the visit method of the visitor.
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LockedDataNodeTypeN (LockedDataNodeTypel). The LockedDataNodeTypeN classes
implement the operations defined in the abstract LockedDataNode class. This includes the
unlock() operation to unlock the various locked node objects and return the unlocked ver-
sions of the nodes.

UnlockedDataNode (UnlockedDataNode). This class represents the unlocked version of a
locked data node. The unlocked version of a node has some important characteristics:

- It has no access to the parent(s) or children of its corresponding locked node. It only
contains the data specific to the node itself, that is, the data that the user has been
granted permission to see.

- It has no accept() operation. The traversal of a hierarchical data structure with a secure
visitor is done on the locked nodes, not the unlocked nodes.

UnlockedDataNodeTypeN (UnlockedNodeTypel). The concrete implementations of Un-

lockedDataNode implement the operations defined in the abstract class.

UserCredentials. The UserCredentials represent the current user of the system and/or the
permissions assigned to the current user. The Secure Visitor pattern does not place many re-
strictions on the specific implementation of the user credentials. The only requirement is that
it is possible for a node to use the credentials to control access to the node’s data.

3.2.6 Consequences

In addition to the set of consequences associated with the standard Visitor pattern, the Secure Vis-
itor pattern has these additional consequences:

It clearly separates security mechanisms from user-level functionality. The use of this pattern
requires that the nodes in the data hierarchy, not the visitors themselves, implement security.
This makes it easy to

- test and verify the security aspects separately from the user-level functionality. Because
the security functionality is implemented separately from the user-level functionality,
more rigorous testing and verification techniques can be applied to the security state ma-
chine than to the user-level functionality state machine.

- change or replace the security mechanism. Because the security functionality is imple-
mented in the nodes in the data hierarchy and not in the various visitors of the data hie-
rarchy, the security mechanism can be changed without requiring any modifications to
the visitors.

It prevents programmatic access to the user-level functionality that avoids security. Because

the only way to access a locked node in the data hierarchy is via the accept() method of the

Visitor pattern and the only class allowed to create an unlocked version of a node is its cor-

responding locked node, it is difficult or impossible to programmatically access the data in a

node without supplying valid credentials for the node.

3.2.7 Implementation

In addition to the implementation considerations associated with the standard Visitor pattern, the
Secure Visitor pattern has the following implementation consideration:
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How is the data in a locked node protected? The goal of the Secure Visitor design pattern is to
make it difficult to read the data in a locked node without supplying the appropriate credentials
for the node. While the pattern itself makes it difficult to programmatically read a locked node
data without the appropriate credentials, it still may be possible to read the raw bytes making up
the locked node and thereby gain access to the data in the locked node. This implies that the data
in the locked node must actually be “locked” in some manner. Data can be locked in a locked
node using encryption or off-line storage.
«  Encryption. The data in a locked node can be encrypted and only decrypted as part of the
process of making an unlocked version of the node after accepting the credentials of a visi-
tor.

. Off-line storage. The actual data in a locked node can be stored in some sort of an external,
protected data management system like a database. The actual node data would only be
loaded from the external source after accepting the credentials of a visitor.

3.2.8 Sample Code

The following collaboration diagram represents the basic behavior of the example code presented
in this section:

:HierarchicalDataVisitor

Visitor Passed to a Locked Nede Via Its accept() Method.

Unlocked Mode Passed to Visitor Via Visitor's Appropriate visit...{) Method.

:UnlockedModeTypel

Locked Data Nede Creates Unlocked Data Node (unlock()) If Vistor's Credentials Are Accepted (checkCredentials()).

Figure 10: Secure Visitor Example Code Collaboration Diagram

This class represents the credentials of the user associated with a visitor; that is, the visitor is visit-
ing the data in response to some action performed by the user represented by the given creden-
tials. This class will not be sketched out in this example.

class UserCredentials;

This is a forward declaration for an unlocked version of the locked node. This will be defined lat-
er in the example.

class UnlockedDataNode;

This is a forward declaration for the visitor of the locked nodes in the hierarchical data. This will
be defined later in the example.

class HierarchicalDataVisitor;

This defines the general interface for a locked node in the Secure Visitor pattern. It looks just like
the interface in the standard Visitor pattern.

class LockedDataNode {
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public:
virtual void accept(HierarchicalDataVisitor& visitor,
UserCredentials user);

private:

// Each type of node will have some way of checking the visitor’s
// credentials to see if the user has permission to access the
// node.

virtual bool checkCredentials(UserCredentials user);

¥

The visitor interface in the Secure Visitor looks very much like the visitor interface in the stan-
dard Visitor pattern. The only difference is that the various visit..() methods accept the un-
locked version of a node, not the locked version.

class HierarchicalDataVisitor {
public:

virtual ~HierarchicalDataVisitor()
virtual void visitNodeTypel(UnlockedNodeTypel *node);

protected:

HierarchicalDataVisitor();

}:

Each concrete node in the data hierarchy has both a locked and unlocked version. Only a locked
node will be able to create an unlocked node.

class LockedNodeTypel : LockedDataNode {
public:

// The only way to access the data in the data hierarchy in the
// Secure Visitor pattern is via the accept() method that accepts a
// node visitor and the current user®s credentials.
void accept(HierarchicalDataVisitor& visitor,
UserCredentials user);

private:

// IT the locked node accepts the visitor®s credentials, it will
// create an unlocked version of itself to pass to the visitor for
// processing. Only a LockedDataNode can create an

// UnlockedDataNode.

UnlockedNodeTypel unlock();

// Each type of node will have some way of checking the visitor’s
// credentials to see if the user has permission to access the
// node.

bool checkCredentials(UserCredentials user);
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// Track the children of the node somehow...
// ...

}:
The accept method for a locked node in the data hierarchy checks the user’s credentials and un-

locks the node and passes it on to the visitor if the credentials are valid for the node.

void LockedNodeTypel::accept(HierarchicalDataVisitoré& visitor,
UserCredentials user) {

// Are the credentials valid for this node?
if (checkCredentials(user)) {

// The user has access to this node. Unlock the node and pass it
// on to the visitor.
visitor.visitNodeTypel(unlock(Q));

}

// Visit the children of the node...
// ...

}

Note that the constructor for an unlocked node is private and that the corresponding locked node
class is its friend. This means that an unlocked node can be created only by a locked node.

class UnlockedNodeTypel {
public:

...Data access methods, etc.
private:

UnlockedNodeTypel();
friend class LockedNodeTypel;

}
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4 The Implementation-Level Patterns

4.1 Secure Directory
4.1.1 Intent

The intent of the Secure Directory pattern is to ensure that an attacker cannot manipulate the files
used by a program during the execution of the program. See “FIO15-C. Ensure that file operations
are performed in a secure directory” in The CERT C Secure Coding Standard [Seacord 2008] for
additional information regarding this issue.

4.1.2 Motivation

A program may depend on a file for some length of time during program execution. The program
developers usually assume that the files used by the program will not be manipulated by outside
users during the execution of the program. However, if this assumption is false, a file may be
modified by multiple users, which means that a malicious user may modify or delete the file dur-
ing a critical time when the program relies on the file remaining unmodified, causing a race condi-
tion in the program.

The Secure Directory pattern ensures that the directories in which the files used by the program
are stored can only be written (and possibly read) by the user of the program.

4.1.3 Applicability

The Secure Directory pattern is applicable for use in a program if

«  the program will be run in an insecure environment; that is, an environment where malicious
users could gain access to the file system used by the program

o  the program reads and/or writes files

«  program execution could be negatively affected if the files read or written by the program
were modified by an outside user while the program was running

41.4 Structure

Programmatically, the structure of the Secure Directory pattern is fairly simple. Prior to opening a

file for reading or writing, the Secure Directory pattern states that the program must

1. find the canonical pathname of the directory of the file (see Section 4.2, “Pathname Canoni-
calization™)

2. check to see if the directory, as referenced by the canonical pathname, is secure

The structure of the secure directory is such that the directory has write permissions limited to the
user and the superuser. No other users may modify files in the secure directory. Furthermore, all
directories that appear before the directory of interest must prevent other users from renaming or
deleting the secure directory.
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4.1.5 Participants

The participants in the Secure Directory pattern are
o  the program reading and writing the file

o the file system
4.1.6 Consequences

Secure Directory reduces the possibility of race conditions occurring between programs controlled
by different users. Race conditions involving a secure directory may be produced only by multiple
programs under the control of the user.

The program speed will be degraded due to the canonicalization of pathnames and the checking
for secure directories. To reduce the overhead of checking for secure directories, it is possible to
cache the result of checking the security of a particular directory. Note that the caching of secure
directory results assumes that the permissions of directories used by the program are not changed
during program execution.

4.1.7 Implementation

Unless a program is run with root privileges, it does not have the ability to create secure directo-

ries. Therefore, the program should check that a directory offered to it is secure, and refuse to use

it otherwise. As discussed in the Structure section, the basic implementation of the Secure Direc-

tory pattern involves the following steps:

1. Find the canonical pathname of the directory of the file to be read or written. (See Section
4.2, “Pathname Canonicalization.”)

2. Check to see if the directory, as referenced by the canonical pathname, is secure.

- If the directory is secure, read or write the file.
- If the directory is not secure, issue an error and do not read or write the file.

4.1.8 Sample Code

The sample code provided in this section was taken directly from “FIO15-C. Ensure that file op-
erations are performed in a secure directory” in The CERT C Secure Coding Standard [Seacord
2008].

Under a POSIX-compliant OS, a function to check a directory to see if it is secure may be imple-
mented as follows:

#include <stdlib.h>
#include <unistd.h>
#include <limits._.h>
#include <libgen.h>
#include <sys/stat.h>
#include <string.h>

/* Returns nonzero if directory is secure, zero otherwise */
int secure_dir(const char *fullpath) {

char *path_copy = NULL;

char *dirname_res = NULL;
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char **dirs = NULL;
int num_of_dirs = 0O;
int secure = 1;
int i;

struct stat buf;

uid_t my uid = geteuid();

if (1(path_copy = strdup(fullpath))) {
/* Handle error */

}

dirname_res = path_copy;
/* Figure out how far it is to the root */
while (1) {

dirname_res = dirname(dirname_res);

num_of _dirs++;

it ((strcmp(dirname_res, /") == 0) ||

(strcmp(dirname_res, "//") == 0)) {
break;

}

}
free(path_copy);

path_copy = NULL;

/* Now allocate and fill the dirs array */

ifT ((dirs = (char **)malloc(num_of_dirs*sizeof(*dirs)))) {
/* Handle error */

}

if (M{dirs[num_of dirs - 1] = strdup(fullpath))) {
/* Handle error */

}

it (!(path_copy = strdup(fullpath))) {
/* Handle error */

}

dirname_res = path_copy;
for (i = 1; i < num_of_dirs; i++) {
dirname_res = dirname(dirname_res);

dirs[num_of _dirs - i - 1] = strdup(dirname_res);

}
free(path_copy);
path_copy = NULL;

/* Traverse from the root to the leaf, checking
* permissions along the way */
for (i = 0; 1 < num_of_dirs; i++) {
if (stat(dirs[i], &buf) 1= 0) {
/* Handle error */
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}
if ((buf.st_uid = my_uid) && (buf.st_uid = 0)) {
/* Directory is owned by someone besides user or root */
secure = 0;
} else if ((buf.st_mode & (S_IWGRP | S_IWOTH))
&& ((i == num_of _dirs - 1) || '(buf.st_mode & S_ISVTX))) {
/* Others have permissions to the leaf directory
* or are able to delete or rename files along the way */
secure = 0;

}

free(dirs[i]);
dirs[i] = NULL;
}

free(dirs);
dirs = NULL;

return secure;

}

Given the secure_dir() function, the Secure Directory pattern may be implemented in C as fol-
lows:

char *dir_name;

char *canonical_dir_name;

const char *file_name = "passwd"; /* filename within the secure directory */
FILE *fp;

/* initialize dir_name */

canonical_dir_name = realpath(dir_name, NULL);
if (canonical_dir_name == NULL) {
/* Handle error */

}

if (Isecure_dir(canonical_dir_name)) {
/* Handle error */

3

if (chdir(canonical_dir_name) == -1) {
/* Handle error */

¥

fp = fopen(file_name, "w");
if (fp == NULL) {
/* Handle error */

}

/*... Process file ...*/
if (fclose(fp) '=0) {

/* Handle error */

}
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if (remove(file_name) != 0) {
/* Handle error */

}

4.2 Pathname Canonicalization

421 Intent

The intent of the Pathname Canonicalization pattern is to ensure that all files read or written by a
program are referred to by a valid path that does not contain any symbolic links or shortcuts, that
is, a canonical path.

4272 Motivation

Because of symbolic links and other file system features, a file may not actually reside in the di-
rectory indicated by a path. Therefore, performing string-based validation on the pathname may
yield false results. Having the true, canonical pathname is particularly important when checking a
directory to see if it is secure.

4.2.3 Applicability

The use of the Pathname Canonicalization pattern is applicable if all of the following conditions
are true:

«  the program accepts pathnames from untrusted sources

« anattacker could provide a pathname to the system that non-obviously refers to a directory
or file to which the attacker should not have access

«  the program runs in an environment where each file has a unique canonical pathname
4.2.4 Structure

Programmatically, the structure of the Pathname Canonicalization pattern involves calling an OS-
specific pathname canonicalization function on the given pathname prior to opening the file. The
canonicalized pathname is used when operating on the file.

The canonicalized pathname itself has a structure such that every element of the canonicalized
path, except the last, is the genuine directory, and not a link or shortcut. The last element is the
genuine filename, and not a link or shortcut.

4.2.5 Participants

The participants in the Pathname Canonicalization pattern are

o  the program opening file(s)

« the file system (potentially, depending on the implementation of the OS-specific canonicali-
zation function)

4.2.6 Consequences

Pathname canonicalization guarantees that textual analysis of the canonicalized pathname yields
accurate results, which improves the accuracy and security of file access.
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The program speed is degraded due to the canonicalization of pathnames. To reduce the overhead
of canonicalization, it is possible to cache the canonicalized pathname. Note that such caching
assumes that the directory structure accessed by the program is not changed during program ex-
ecution.

4.2.7 Implementation

The core of the implementation of this pattern is an OS-specific function for performing pathname
canonicalization. The canonicalization function is a routine that would ensure that every directory
in a pathname is a genuine directory rather than a link or shortcut. The result of the canonicaliza-
tion function is a canonicalized path such that string-based validation of the path always yields
valid results. For instance, a canonicalized path that begins with the pathname to a user’s home
directory will guarantee that the path’s file lives in the user’s home directory or a subdirectory
below the user’s home directory.

As discussed in the Structure section, given the canonicalization function, the implementation of

the Pathname Canonicalization pattern is fairly simple:

1. The program calls the OS-specific pathname canonicalization function on the given path-
name prior to opening a file.

2. The canonicalized pathname is used when operating on the file.

Canonicalization routines should be provided by the platform; a program should simply call the
platform’s canonicalization routine before performing textual analysis on a pathname. Some OS-
specific canonicalization functions are

. POSIX-compliant OSs: realpath()

o  systems with glibc: canonicalize_file_name(), a GNU extension provided in glibc

See FIO02-C, “Canonicalize path names originating from untrusted sources for implementation
details” in The CERT C Secure Coding Standard [Seacord 2008].

4.2.8 Sample Code

The following sample code canonicalizes a user-supplied pathname before verifying and opening
the file.

/* Verify argv[1l] is supplied */

char *canonical_filename = canonicalize_file_name(argv[1l]);
it (canonical_filename == NULL) {
/* Handle error */

}
/* Verify filename */
it (fopen(canonical_filename, "w'"™) == NULL) {

/* Handle error */

}
VA 4

free(canonical_filename);
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canonical_filename = NULL;
4.2.9 Known Uses

xarchive-0.2.8-6

4.3 Input Validation
4.3.1 Intent

Many vulnerabilities can be prevented by ensuring that input data is properly validated. Input va-
lidation requires that a developer correctly identify and validate all external inputs from untrusted
data sources.

4.3.2 Motivation

The use of unvalidated user input by an application is the root cause of many serious security ex-
ploits, such as buffer overflow attacks, SQL injection attacks, and cross-site scripting attacks.

Given the prevalence of applications with a client-server architecture, one issue faced by system
designers is where to perform the input validation, on the client side or on the server side. Prob-
lems in input validation occur when only client-side validation is performed.

Client-side validations are inherently insecure. It is easy to spoof a web page submission and by-
pass any scripting on the original page. This is more or less true for any type of client-server ar-

chitecture. However, while you cannot rely on client-side validation, it is still useful. Immediate

user feedback can avoid another round trip to the server, saving time and bandwidth.

4.3.3 Example

A university is writing an ERP (Enterprise Resource Planning) application with a web-based in-
terface to allow university employees to enter time sheet information, bill purchases against ac-

counts, and track the status of various funding sources. The university wishes to ensure (among

other security considerations) that malicious or incorrect user input does not result in forbidden

changes to ERP data, violations of data integrity, or forbidden access to data by a user.

43.4 Applicability

This pattern is applicable to any software that accepts data from an untrusted source. Any data
that arrives at a program interface across a security boundary requires validation. General exam-
ples of such data include argv, environment, sockets, pipes, files, signals, shared memory, and
devices. Some input sources specific to web applications are GET and POST parameters from
HTTP forms. Other applications may have other input sources.

4.3.5 Structure

The structure of the Input Validation pattern is fairly simple and only requires identifying and
validating each untrusted input as shown in Figure 11.
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Figure 11: Structure of the Input Validation Pattern

4.3.6 Participants

These are the participants in the Input Validation pattern:
«  The system accepting data. The primary participant in this pattern is the system that accepts
and validates data.

«  External entities providing data. The data provided to the system comes from some external
source. Potential data sources include

- human users

- files

- network connections

- memory shared with other processes
- database systems

4.3.7 Consequences

The benefits of validating all system input is increased system security (exploits that rely on poor
handling of invalid input are prevented) and reliability (the system behaves in a predictable man-
ner when provided with invalid input). The costs of input validation are slower system perfor-
mance and the additional work required to identify and handle all places where invalid input can
occeur.

4.3.8 Implementation

The implementation of the Input Validation secure design pattern involves two general design

tasks:

«  Specify and validate data. Data from all untrusted sources must be fully specified and the
data validated against these specifications. The system implementation must be designed to
handle any range or combination of valid data. Valid data, in this sense, is data that is antic-
ipated by the design and implementation of the system and therefore will not result in the
system entering an indeterminate state. For example, if a system accepts two integers as in-
put and multiplies those two values, the system must either (a) validate the input to ensure
that an overflow or other exceptional condition cannot occur as a result of the operation or
(b) be prepared to handle the result of the operation in the event of an overflow or other ex-
ceptional condition. The specifications must address limits, minimum and maximum values,

50 | CMU/SEI-2009-TR-010



minimum and maximum lengths, valid content, initialization and re-initialization require-
ments, and encryption requirements for storage and transmission.

Ensure that all input meets the specification. Use data encapsulation (e.g., classes) to de-
fine and encapsulate input. For example, instead of checking each character in a user name
input to make sure it is a valid character, define a class that encapsulates all operations on
that type of input. Input should be validated as soon as possible. Incorrect input is not always
malicious; often it is accidental. Reporting the error as soon as possible often helps correct
the problem. When an exception occurs deep in the code it is not always apparent that the
cause was an invalid input and which input was out of bounds.

A data dictionary or similar mechanism can be used for specification of all program inputs. Input
is usually stored in variables, and some input is eventually stored as persistent data. To validate
input, specifications for what is valid input must be developed. A good practice is to define data
and variable specifications, not just for all variables that hold user input, but also for all variables
that hold data from a persistent store. The need to validate user input is obvious; the need to vali-
date data being read from a persistent store is a defense against the possibility that the persistent
store has been tampered with.

General Implementation Process

In more detail, the process for implementing this pattern consists of the following steps:

1.

Identify all input sources. All sources of input to the system must be identified. An input
source is any entity or resource that provides data to the system where the received data is
non-deterministic; that is, any source of data where the value of the data is not completely
determined by the current internal state of the system and past actions performed by the sys-
tem. As mentioned previously, potential input sources are the file system, a database system,
network traffic read via a socket, input from a pipe, the keyboard, etc.

Identify all reads of input sources. For each input source, identify every point in the system
where data from the input source is initially read. Note that if the system has been designed
to be loosely coupled from the input sources and hence has interaction with the input sources
isolated to a small number of places in the code base, the identification of reads from input
sources will be relatively simple. However, if the system was designed so that interaction
with data sources is scattered throughout the code base, identification of all reads from input
sources will be difficult.

Define criteria for valid data. For each of the data reads identified in the previous step, de-
fine what it means for data read by the current read to be valid. The definition of validity will
depend on the type of data being read and what that particular data will be used for. For ex-
ample:

a.  Numeric data. Numeric data should be checked to make sure that it is within some
fixed bounds. It should also be checked to ensure it does not cause overflow or under-
flow errors in subsequent computations. Additional guidance on the checking of numer-
ic data can be found in the CERT C Secure Coding rules and recommendations [Sea-
cord 2008].

b.  String data. If the string data is going to be displayed on a web page, it should be sani-
tized to ensure that it does not contain HTML and client-side script code. If the string
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data is going to be used in a database query, it should be sanitized to foil SQL injection
attacks.

4. Figure out how to handle invalid data. For each of the data reads identified in step two, the
behavior of the system when given invalid data should be explicitly defined. Responses to
invalid input can range from issuing a warning and continuing with default data to re-
requesting the data from the input source. Correct handling of invalid data is a highly appli-
cation-specific matter.

5. Add code to check for and handle invalid data. For each of the data reads identified in
step two, code should be written to check the validity of the data read and cases of invalid
data should be handled.

There are two common approaches to identifying invalid data: blacklisting and whitelisting.
Blacklisting consists of comparing input data against a set of inputs known to be invalid,
commonly known as a blacklist. If it is not on the blacklist, the input may be considered va-
lid. Whitelisting consists of comparing input data against a set of inputs known to be valid,
commonly known as a whitelist. If it is not on the whitelist, the input may be considered
invalid. Both whitelisting and blacklisting involve a simple implementation, comparing input
against the whitelist or blacklist. The main work comes in maintaining the whitelist or black-
list. When either solution is possible, the whitelist is considered a safer choice because new
forms of invalid input need to be entered into a blacklist, but a whitelist requires no change
upon discovery of new forms of invalid input.

Additional Implementation Information

Some specific ways to implement input validation in a structured method are available in these

sources:

«  “Input Validation Using the Strategy Pattern” [Gervasio 2007]. This solution uses the Gang
of Four Strategy pattern [Gamma 1995] to handle input validation for various classes of in-
puts. The presented solution is programmed in PHP.

o  “Client/Server Input Validation Using MS ATL Server Libraries” [MSDN 2009c]. This pro-
vides an example (in C++) under Windows of doing client-server input validation using in-
put validation routines provided by the ATL libraries.

«  Secure Programming Cookbook by Viega and Messier [Viega 2003]. This book provides
functions and programming strategies for performing input validation in C++.

«  “Input Validation in Apache Struts Framework” [You 2009]. This article provides a good
tutorial on how to perform input validation when programming in Java using the Apache
Struts framework. Of general interest in the tutorial is the detailed specification of valid sys-
tem input.

4.3.9 Sample Code

This sample code is an example of a structured input validation methodology in C++. Note that
there are many other ways to implement the Input Validation pattern.

The basic architecture of the example implementation of the Input Validation pattern is to
represent a single set of validation criteria as a val idator class. A validator class is a class

52 | CMU/SEI-2009-TR-010


http://www.devshed.com/c/a/PHP/Validating-User-Input-with-the-Strategy-Pattern/�
http://msdn.microsoft.com/en-us/library/x88c4k6b%28VS.71%29.aspx�
http://javaboutique.internet.com/tutorials/strutsvalid/�

with a single static val idate() method that takes a piece of input to validate and returns true if
the input is valid and false if the input is invalid.

The following validator class checks to see if an integer falls within a defined range.

template <int lower, int upper> class InRange {
public:

static bool validate(int item) {
return ((item >= lower) && (item <= upper));
}
}:

The following validator class checks to see whether two integers will not overflow if multiplied
together [Seacord 2008].

class NoOverflowOnMult {
public:
static bool validate(int ol, int 02) {

// This validation method only works if the size of a long long is
// greater than double the size of an integer.
assert(sizeof(long long) >= 2 * sizeof(int));

signed long long tmp = (signed long long)ol * (signed long long)o2;

// IT the product cannot be represented as a 32-bit integer,
// there is overflow.
return (Ctmp > INT_MAX) || (tmp < INT_MIN));
}
};

The following val idator class checks to see if a string holds a valid name where a valid name
contains only alphanumeric characters, contains exactly one space, and is less than a defined
number of characters long.

template<int maxNamelLen> class GoodName {
public:
static bool validate(char *str) {

// The name should contain no digits and exactly 1 space.
unsigned int pos = 0;
bool sawSpace = false;
while ((pos < maxNameLen) && (str[pos] = "\0")) {
// Are we looking at a space in the string we are checking?
if (strfpos] == " ") {
// 1s this the 2nd space in the string?
if (sawSpace) {
// The name has more than 1 space. It is not a valid name.
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return false;
}
// Track that we have seen 1 space.
sawSpace = true;
}
else {
// Is the current character an alphabetic character?
if (lisalpha(str[pos])) {
// The name contains at least 1 non-alphabetic character. It
// is not a valid name.
return false;
}
}

// Advance to the next character.
pos++;

}

// A valid name string is less than maxNameLen characters.
if (strpos] = *\0") {
return false;

}

// 1f we get here the name is valid.
return true;

}
};

The main() program provides some examples of how to use the validator classes.

int main(int argc, const char* argv[]) {
if (InRange<1,10>::validate(5)) {
cout << "5 is valid input\n";

}

if (MInRange<1,10>::validate(15)) {
cout << "15 is NOT valid input\n*;

}

it (NoOverflowOnMult::validate(12, 33)) {
cout << "12*33 will not overflow\n';

}

it (!(NoOverflowOnMult::validate(INT_MAX, 33))) {
cout << "INT_MAX*33 WILL overflow\n";

}

it (GoodName<100>::validate('Corey Duffle™)) {
cout << ""Corey Duffle” is a valid name.\n";

}

it (1GoodName<100>::validate("'Sir Chumley the 5th™)) {
cout << ""Sir Chumley the 5th" is NOT a valid name.\n";
}
}
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4.3.10 Example Resolved

The university has identified three sources of input to their (very simple) ERP system:
o  adatabase system

o  GET parameters from HTML forms
o  POST parameters from HTML forms

The university has written a utility library to read GET/POST parameters that allows the develop-
ers to easily specify a validity checking routine to use when reading GET/POST parameters. The
developers are using a simple static analysis tool to ensure that all reads of GET/POST parameters
occur only through the utility library. They have instituted formal code reviews of the input vali-
dation checking routines to ensure that all input validation criteria are implemented correctly.

The university is using a third-party database abstraction library that sanitizes all provided strings
that are to be used in the creation of SQL queries and provides some basic sanity checking of the
results of SQL queries.

4.3.11 Known Uses

Many web frameworks and languages and general programming libraries provide support for per-
forming input validation and sanitization. Frameworks with known input validation support in-
clude

« Ruby on Rails
o Java Struts

o  Pylons

« Django

4.4 Runtime Acquisition Is Initialization (RAII)
4.4.1 Intent

The intent of the RAII pattern is to ensure that system resources are properly allocated and deallo-
cated under all possible program execution paths. RAIl ensures that program resources are prop-
erly handled by performing resource allocation and deallocation in an object’s constructor and
destructor, removing the need for external users of an object to handle the allocation and dealloca-
tion of the object’s resources.

4.4.2 Motivation

Typically every resource that is used must be released in a timely manner. This is necessary to
prevent resource exhaustion. It is also important not to release resources while they are still being
used. This often has fatal consequences. For instance, usage of memory that has been previously
freed is widely considered a security flaw because many memory allocation systems re-use freed
memory when further memory is requested. The usage of freed memory might consequently
overwrite data that was stored in memory requested after the original memory was freed.
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Furthermore, the maintenance of when to free resources often becomes a daunting task due to
large numbers of reserved resources. Unless a resource’s lifetime is planned in the software de-
sign, it is difficult to determine when the resource is no longer necessary and may be released.

4.4.3 Example

One example of the use of the RAII pattern is a program that allocates memory at the beginning
of a function and frees the memory before the function exits. This includes freeing the memory
under alternate control flows. For instance, if the function throws an exception or halts the pro-
gram, it still frees the memory first. Another example of the use of the RAII pattern is an object
that opens a network connection when it is constructed and closes the network connection when it
is destroyed.

Similarly, an object might open a file when it is constructed. In this case the object must close the
file in its destructor. If the opening of the file is optional, the destructor assumes the responsibility
for closing the file if and only if it has been opened.

4.4.4 Applicability

RAII applies to any system that uses a resource that must be acquired and subsequently released.
Such resources include regions of memory, opened file descriptors, and network resources, such
as open sockets.

The pattern is useful when the amount of available resources is finite and limited and when failing
to release acquired resources yields resource exhaustion and denial of service.

4.4.5 Structure

The structure of the RAII secure design pattern is relatively straightforward. In the common code
executed at the start of the lifetime of an object (commonly in the object’s constructor in object-
oriented languages), allocate resources. In the common code executed at the end of the lifetime of
an object (commonly the object’s destructor in object-oriented languages), deallocate resources.

4.4.6 Participants

The participants in the RAII pattern are
« the object making use of system resources

o the system resources
4.4.7 Consequences

RAII enforces automatic resource management, in that a resource is acquired only by the object or
function that needs it, and the resource is never left unfreed after the object’s lifetime. The pro-
gram might run more slowly with RAII than it might run with an alternate resource management
scheme, such as garbage collection. Such comparisons are highly implementation-dependent.

4.4.8 Implementation

RAII enforces automatic resource management, in that a resource is acquired only by the object or
function that needs it. When an object manages a resource, the object typically allocates the re-
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source in its constructor and releases the resource in its destructor. The object’s destructor must
also be invoked when the object itself is no longer required. But this is itself another instance of
RAII, where the object that manages a resource is itself another resource and must be managed by
another object or function.

When a function manages a resource, the function typically allocates the resource during its ex-
ecution (often near the beginning) and releases the resource before it returns. The developer must
be aware of all forms of abnormal exit of the function, such as exceptions, and must ensure the
resource is released upon any exit venue. That is, if the function calls a subfunction that throws an
exception, the function must catch the exception and release the resource before handling the ex-
ception or rethrowing it.

For more implementation details, see the following CERT secure coding guidelines:
o  For C++, see FIO42-CPP, “Ensure files are properly closed when they are no longer needed
for file-based RAII” [CERT 2009b]

. For C, see MEMOO-C, “Allocate and free memory in the same module, at the same level of
abstraction for memory-based RAII” [Seacord 2008]

«  ForJava, see FIO34-J, “Ensure all resources are properly closed when they are no longer
needed for network-based RAII” [CERT 2009c]
4.4.9 Sample Code

RAII is most prevalent in C++ because an automatic variable object in C++ will have its destruc-
tor called when its scope terminates, either normally or through a thrown exception.

The following RAII class is a lightweight wrapper of the C standard library file system calls.

#include <cstdio>
#include <stdexcept> // std::runtime_error
class file {

public:
file (const char* filename) : file_(std::fopen(Ffilename, "w+™)) {
it (Ifile)
throw std::runtime_error(*"file open failure™);
}
~fFile(Q {
if (0 '= std::fclose(file )) { // need to flush latest changes?
// handle it
}
}

void write (const char* str) {
if (EOF == std::fputs(str, file)))
throw std::runtime_error("'file write failure™);
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private:
std::FILE* file_;

// prevent copying and assignment; not implemented
file (const file &);
file & operator= (const Ffile &);

¥
Class i le can then be used as follows:

void example_usage() {
file logfile("logfile.txt); // open file (acquire resource)
logfile.write("hello logfile!l™);
// continue using logfile ...
// throw exceptions or return without worrying about closing the
// log; it is closed automatically when logfile goes out of scope

}

This works because the class i le encapsulates the management of the FILE™ file handle. When
objects File are local to a function, C++ guarantees that they are destroyed at the end of the en-
closing scope (the function in the example), and the Fi le destructor releases the file by calling
std: :fclose(Ffile_ ). Furthermore, fi le instances guarantee that a file is available by
throwing an exception if the file could not be opened when creating the object.

4.4.10 Known Uses

The BOOST library provides the boost: :shared_ptr, which is also marked for inclusion in
the new C++0x standard. It is a smart pointer that uses reference counting to manage pointed-to
objects, and it guarantees that the referenced objects are destroyed when the shared_ptr is

destroyed.
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5 Conclusion and Future Work

5.1 Conclusion

Secure software development requires secure designs. Secure design patterns can address security
issues at varying levels of abstraction. Useful secure design patterns can be created by analyzing
and generalizing existing best practices in secure software development that are not immediately
identifiable as patterns or by extending existing object-oriented definition design patterns to ad-
dress security concerns.

While the availability of information and tools to help developers to develop code with fewer se-
curity defects has improved over time, information about secure design techniques is not as readi-
ly available. Distilling secure design techniques into the context of reusable design patterns allows
these techniques to be readily reused. The broader application of secure design should reduce the
cost of producing secure products while reducing the risks associated with security vulnerabilities
for both developers and end users.

5.2 Future Work

Secure design patterns created by extension from existing object-oriented design patterns have yet
to be tested in real world applications. Creating one or more prototypes to evaluate the application
of these patterns would be useful in proving their merit and would serve as a reference for devel-
opers using them in practice. The use of an object-oriented language such as Java or C++ would
be particularly applicable in this case.

Because we were able to extend several traditional object-oriented patterns to add security proper-
ties, it would be useful to analyze whether this could be done with other existing non-security re-
lated patterns.

Continued mining of existing secure products may identify additional secure design patterns that
could be more generally useful.

In the process of describing secure design patterns, a number of techniques that are detrimental to
software security can be identified. Specifically documenting these secure design anti-patterns
can help developers to isolate areas of their software that are at particular risk.
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